Exceptional service in the national interest

Modeling the Hydrologic/Ecologic/Economic/Social Dynamics of Small Scale Community Irrigation Systems Vincent C. Tidwell

Sandia National Laboratories

Acequias and the Future of Resilience in Global Perspective Las Cruces, NM, March 5, 2013

> Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Project Team

- Funding
 - National Science Foundation Program on the Dynamics of Coupled Natural & Human Systems - #1010516
 - NSF NM EPSCoR #0814449
 - New Mexico Agricultural Experiment Station
- Universities
 - New Mexico State University (Brian Hurd, Sam Fernald, Ken Boykin, Andres Cibils, Steve Guldan, Caiti Steele, Carlos Ochoa)
 - University of New Mexico (Jose Rivera, Sylvia Rodriguez)
 - New Mexico Institute of Mining and Technology (John Wilson)
 - University of Concepcion, Chile (J.L. Arumi)
- Collaborators
 - Sandia National Laboratories (Vince Tidwell)
 - New Mexico Acequia Association (Marquita Ortiz)

Key Questions

- What role do acequias play in:
 - Hydrologic buffering?
 - Community resilience?
 - Ecosystem health?
- How do climate change and urban population growth challenge these functions?
- What strategies are needed to assist in protecting these functions?

Need

- Tools to integrate knowledge and data developed as part of project
- Tools to evaluate alternative treatments in face of uncertainty.
- Tools that our stakeholders will trust to assist them in long-term planning.

Approach: Collaborative Modeling

- Process of engaging decision-makers and stakeholders in:
 - Model development, and
 - Decision analysis.
- Purpose of broad input includes:
 - Expand knowledge base,
 - Structure group thinking/discussion,
 - Stimulate group learning, and
 - Ultimately lead to improved advocacy.

System Dynamics

- We employ <u>System</u>
 <u>Dynamics</u>, which provides a formal framework for managing multiple interacting subsystems, each of which vary in time
- With system dynamics we are able to quantify feed-back, time delays, and coupling between subsystem components

Focus is on *Dynamic Complexity* rather than *Detail Complexity*!

System Dynamics: Integrative Modeling

 Provides a framework for integrating over the broad range of factors influencing resource management

System Dynamics: Interactive Modeling

- Broadly accessible
 - PC based
 - User friendly interfaces
 - Computations in seconds to minutes
- Provides interactive environment for scenario testing

Integration Across Disciplines

Ecologic Dynamics

- How will climate impact:
 - Vegetation type and density,
 - Wildfire frequency,
 - Species diversity,
- How is ecology influenced by:
 - Grazing,
 - Hunting,
 - Fuels/wildlife management,
- How do climate and watershed management influence:
 - Stream flows,
 - Groundwater recharge,

Hydrologic Dynamics

- How does water availability influence:
 - Irrigation practices,
 - Upland grazing decisions,
- How do irrigation practices influence the ecology:
 - Riparian habitat,
 - Hydrograph modification,
 - Water quality
- What steps can be taken to improve water availability:
 - Conservation,
 - Cooperative management,

Economic Dynamics

- What influences landowner decisions:
 - Drought,
 - Neighbors,
 - Crop value,
- How are landowners influenced by downstream urbanization:
 - Land and water values,
 - Job opportunities,
 - Basic services,
- What are adaptive mechanisms
 - Outside jobs,
 - Cooperation,
 - Conservation,

Socio-Cultural Dynamics

- What holds people to the land:
 - Family,
 - Sense of community,
 - Traditional practices,
- What ties the community together:
 - Acequia ,
 - Community participation,
 - Shared labor,
- How does urbanization threaten community:
 - Loosing children off land,
 - Changing demographics,
 - Loss of water,

Calibration

Extending Results Downstream

Middle Rio Grande

Data availability:

• Dominant historical data set is from USGS stream flow gages:

"River reach": gage location based spatial unit of mass balance.

- 17 river reaches
 - 12 Rio Grande
 - 4 Rio Chama
 - 1 Jemez River

In addition to river reaches, there are 7 spatial mass balance units representing major reservoirs

Middle Rio Grande

Goal:

 A rapid and physically based, dynamic representation of sw-gw interactions in Rio Grande river system coupled directly to dynamic surface water model.

Strategy:

- Use spatially explicit groundwater models to calibrate spatially aggregated versions in Powersim (system dynamics software).
- Three spatially explicit models of interest:
 - Espanola Basin (Frenzel 1995)
 - Albuquerque Basin (McAda et al 2002)
 - Socorro Basin (Shafike 2005)

Vincent Tidwell

vctidwe@sandia.gov (505)844-6025 http://energy.sandia.gov/